

Hailo-8™: The World's Top Performing Al Processor for Edge Devices

Enables Data-class AI Applications in an Embedded Power Envelope

About Hailo

A leading AI chipmaker for edge devices, founded in 2017

1st generation in MP

Headquartered in Israel with offices in USA, Germany, Japan, China, Korea, Taiwan

Patented structure-defined dataflow architecture

190 + employees with extensiveexperience from leading tech companies

Total \$224M funding including Strategic Investors

NEC & ABB

A growing worldwide partner ecosystem

Awards Honoree

Intelligence Become a Necessity

Hailo's powerful and scalable AI technology enables new capabilities in various markets

Automotive

Autonomous Vehicles, ADAS

ITS (Intelligent Transportation System)

Traffic control, Tolling, Law enforcement

Smart City

Public safety & security

Smart Retail

Cashierless Store, Inventory
Management

Smart Home

Security,
Assisted Living

Industry 4.0

Factory Automation

Deep Learning at the Edge with Hailo-8™

Use-case Examples:

Device Examples:

Intelligent Cameras

Hailo-8™ Highlights

The World's Most Powerful and Efficient Edge Al Processor

High Performance

26 TOPS

Efficient AI architecture

HNC18BC21BH P64R88.00.N 27NS11

Power Efficiency

Typical Power

Consumption: 2.5W

Comprehensive SW Tools

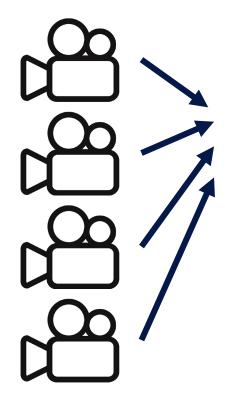
Mature dataflow compiler

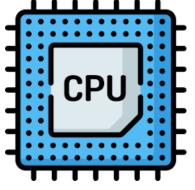
Efficient RT library

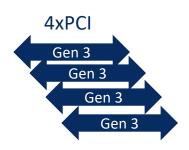
Industrial & Automotive

Grades

Industrial: -40°C to 85°C


Automotive: -40°C to 105°C





Hailo-8™ System Usage

Host processors support

- Intel X86 Celeron, i3, i5, i7, Atom, Xeon, ...
- ▶ AMD X86
- ARM based
 - ▶ i.MX8
 - ► Layerscape (LX2160)
 - ▶ S32G
 - Raspberry Pi
 - FPGA SoC Xilinx Zynq
 - Renesas R-CAR V3H/V4H
 - SocioNext SC2A11

Flexibility & Scalability

- Performance scalability (1x to 12x Hailo-8
 → 26 to 312 TOPS)
- ► Host processor type (X86 & ARM)
- ▶ Interface w/Host (PCIe / Ethernet)

Hailo-8™ Product Offering

Hailo-8[™] Al Processor

- ▶ 26 TOPS
- Industry-leading power efficiency
- ▶ 17 x 17 FCBGA

HNILD HNC18BC21BH P64R88.00.N 27NS11 2027

Hailo-8[™] M.2 Al Acceleration Module

- PCle Interface
- M.2 form factor
 - M.2 Key M 2242/2260/2280
 - M.2 Key B+M 2242/2260/2280
 - M.2 Key A+E 2230
- ► Extended temperature support: -40°C to 85°C

M key 4 lanes

B+M key 2 lanes

A+E key 2 lanes

Hailo-8R™ mPCle Al Acceleration Module

- PCle Interface
- mPCle form factor 3050
- Extended temperature support: -40°C to 85°C

PCIe Acceleration Card

- PCle Interface
- Multi-chip configuration (x4, x5, x6)
- ▶ Up to 156 TOPS
- ► Typical power: 35W

Hailo-8™ M.2 Starter Kit

- ▶ Al accelerator module for developing and prototyping edge Al applications and specifically for video analytics solutions
 - ► M.2 module with Hailo-8[™] Al accelerator processor
 - ▶ Best-in-class real-time performance utilizing the Hailo-8™ 26 TOPS compute power
 - ▶ Industry-leading power efficiency with typical power consumption of 2.5W
 - ▶ Higher cost-efficiency (TOPS/\$) compared with existing solutions
- ▶ Robust software toolchain supports state-of-the-art NN models and applications out-of-the-box
- Suitable for various applications

Hailo-8™-Powered Edge AI Solutions

MicroSys

AIP-LX2160A

VAC-1100

APB-3000AI

OptiPlex 7080

OptiPlex 3070

NE(COM

VTC1021

NISE-51

NISE-52

Xtreme i11

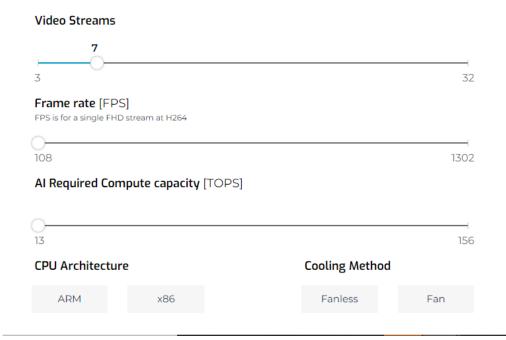
UPS Squared Pro

LEC-2290H

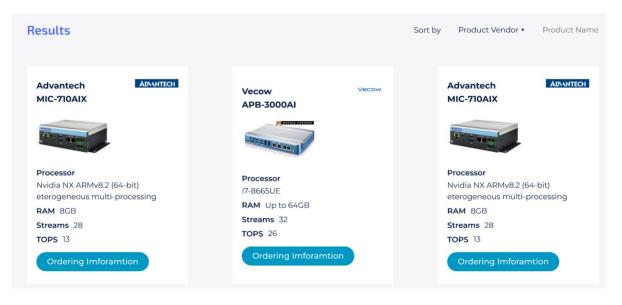
LEC-7242H

RSC101

ebox710-521-fl



Platform Selection Guide



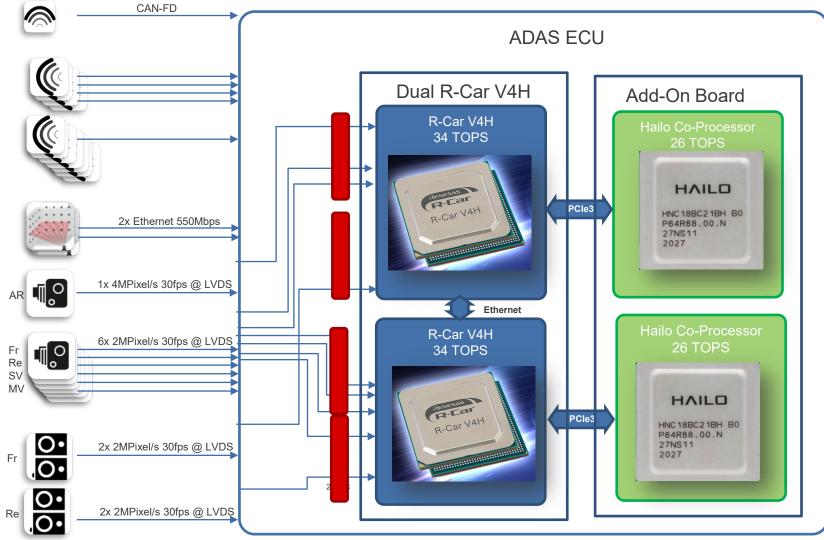
Platform Selection Guide

Quickly find a H/W platform with Hailo inside

- Based on the database maintained by BD
- Clear criteria for selection and de-selection

https://hailo.ai/product/platform-selection/

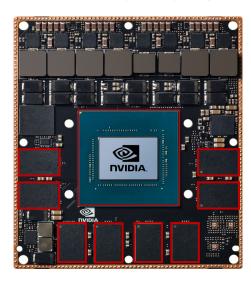
Hailo & NXP Joint Offering


Combining NXP's Arm®-Based Processors with Hailo-8™ AI Processor for a powerful, scalable and efficient AI offering for embedded products

- Generic edge device designs
 - ▶ Hailo-8 combined with Arm® based NXP® i.MX 8 Series delivers a powerful, power-efficient and cost-effective platform for edge devices
 - Application-ready hardware is available from Kontron
- Automotive driven designs
 - ► Hailo-8[™] combined with Arm[®] based NXP[®] S32 Automotive and NXP® Layerscape® platforms results in a high-performance, scalable, safe and efficient automotive grade solution
 - Application-ready hardware is available from MicroSys

Hailo & Renesas Joint Autonomous Drive ECU Concept

- Independent scalability in AI and compute allowing flexibility for L2-L4 ADAS designs
- Best-in-class power efficiency enabling passively cooled ECUs
- Cost-efficient solution "pay for what you need"
- Pay as you grow with Hailo Al accelerator roadmap
- Open software ecosystem allowing OEMs/Tiers control and innovation


Combining Renesas R-Car V4H with Hailo Al Co-Processor

Unprecedented AI Performance

Comparison on Inference Compute Performance

NVIDIA AGX Xavier

General Purpose GPU
+ External Memory

Hailo-8TM M.2 A+E Key

Dedicated AI Chip
No External Memory

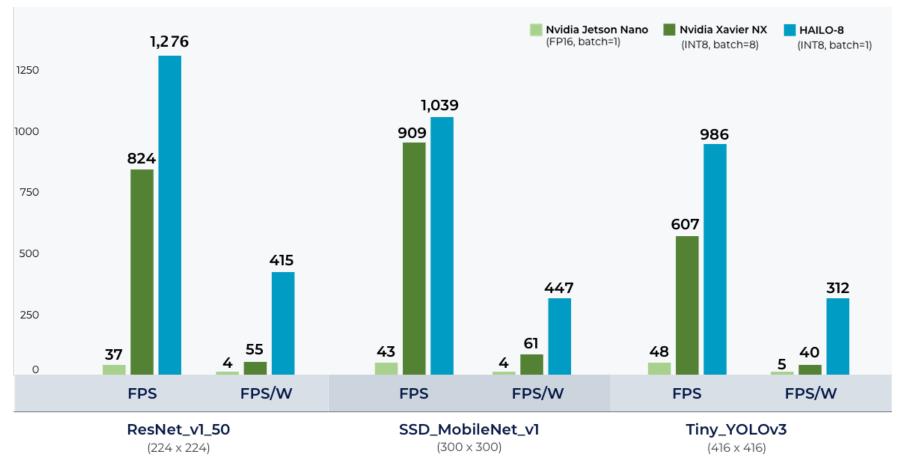
ResNet-50 Benchmark

Device	Total Power [Watt]	Total Power Efficiency [TOPS/W]
Hailo-8™	1.6	3.0
Nvidia Xavier AGX	32	0.14

Conditions:

- TOPS (8-bit): Xavier 32 TOPS, Hailo-8 26 TOPS
- 224x224 image resolution feed @ 656 FPS
- · 8-bit precision
- Batch size = 1

X15 Better
Area Efficiency



X20 Better
Power Efficiency

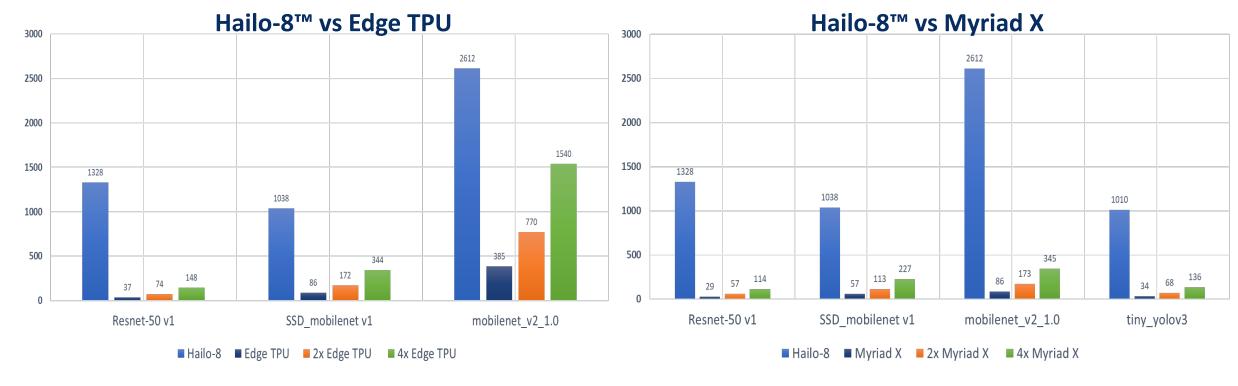
Unprecedented Performance at the Edge

Hailo-8 offers higher performance and as much as x8 the power efficiency of Nvidia's best edge device

Remarks

- SDK version 3.9.0 (June 2021), measured at room temp on a single Hailo-8 device through PCIe interface on a Hailo EVB. System host: Intel® Core™ i5-9400 CPU @ 2.90GHz)
- Xavier NX results are using batch=8 (while Hailo-8 and Jetson Nano are using batch=1) and that Jetson Nano is limited to FP16 (while Hailo-8 and Xavier NX are INT8). Nvidia results for batch=1 and INT8, respectively, are expected to be lower.
- FPS & power figures for Nvidia Jetson Nano and Xavier NX are sourced from the Nvidia website and Github repo, retrieved 12/07/21

Hailo-8™ Unprecedented AI Performance and Power Efficiency


	Intel Myriad X	Google Edge TPU	Hailo-8™	Hailo-8™ outperforms
Performance	87	385	2,613	x30 vs. Myriad X
FPS	, and the second se	x6 vs. Edge TPU		
Power Efficiency	35	275	1,267	x30 vs. Myriad X
FPS/W				x4 vs. Edge TPU

The Hailo-8™ M.2 Al Acceleration module unprecedented Al capabilities

Provides the scalability to run advanced video analytics DL models in high-resolution & high-frame rate

Hailo-8™ Unprecedented Performance at the Edge

Hailo-8™ **outperforms**

x10 vs. Edge TPU

x2 vs. 4 Edge TPU devices

Hailo-8™ **outperforms**

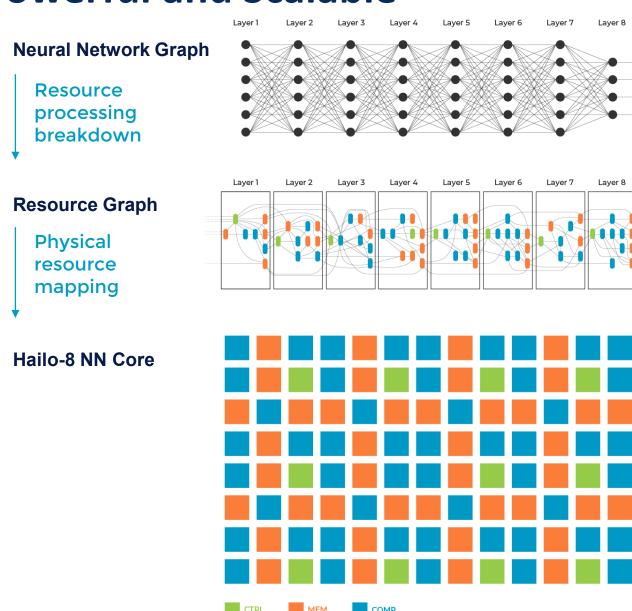
x26 vs. Myriad X

x6 vs. 4 Myriad X devices

- Hailo-8 figures are based on SDK Q1 2022 version, measured at room temperature on Hailo-8 device through PCIe interface on a Hailo-8 evaluation board (system host: Intel Core i5-9400 CPU @ 2.90GHz)
- Edge TPU figures are for batch=1 and INT8, while Myriad X is batch=1 and FP16
- Intel Myriad X figures sourced from: https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks_openvino.html, retrieved April 2022
- Google Edge TPU figures sourced from here and here retrieved April 2022; FPS is converted from latency in ms (1 divided by ms/1000)

Hailo-8™ Measured Benchmarks

Model	Туре	Input Resolution	FPS	Total Power [W]	FPS/W
ResNet-50 v1	Classification	224x224	1,328	3.1	428
MobileNet_v2_1.0	Classification	224x224	2,613	2.1	1,267
MobileNet_v3 ⁴	Classification	224x224	3,519	1.9	1,852
RegNetx_800mf	Classification	224x224	2,462	2.0	1,254
EfficientNet_M	Classification	240x240	891	3.2	278
SSD_MobileNet_v1	Object Detection	300x300	1,055	2.3	453
Tiny_YOLOv3	Object Detection	416x416	1,010	3.2	315
YOLOv3 ⁵	Object Detection	608x608	60	4.3	14
YOLOv4 ⁵	Object Detection	512x512	70	3.04	23
YOLOv5m	Object Detection	640x640	218	4.2	53


Notes:

- 1. Based on Dataflow compiler version 3.18.0 (Q2 2022)
- 2. Measurements were taken at room temperature through PCle interface on Hailo-8 evaluation board
- 3. System host: Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz
- 4. MobileNet_v3 the benchmarked model flavor is Mobilenet V3 Large Minimalistic
- 5. Performance figures are for processing 8 simultaneous streams

Hailo-8™ NN Core: Unique, Powerful and Scalable

- Dataflow vs. decision making
- Physically distributed computation
- Software abstraction allows quickly running a variety of NN models
- Smaller elements lead to Lower power
- >20 patents pending

Up to 12 Hailo-8™ Scalability in Edge Devices devices Up to 6 devices Up to 4 devices Up to 2 devices 1 device 1 to 12 devices 312 **156** TOPS 104 **TOPS 52 TOPS** 26 **TOPS 26** to **312 TOPS TOPS** of AI processing

Falcon-H8: PCIe Accelerator Card with Multiple Hailo-8™

- ▶ Off-the-shelf PCIe for high-performance video analytics systems
 - PCIe accelerator card with x4, x5 or x6 Hailo-8™ devices in a standard PCIe single slot form factor provided by Lanner
 - ▶ Delivers up to **156 TOPS** for video analytics at a typical power consumption of **35W**, no auxiliary power required
 - ▶ Higher cost-efficiency (TOPS/\$) compared with existing solutions

- ▶ A powerful platform for edge AI and video analytics:
 - ▶ High-performance Edge AI Boxes and video analytics servers for Smart Retail, Smart City, and more
 - ▶ Edge servers, industrial PCs and gateways
 - ▶ Industrial and commercial robots
 - Evaluation and prototyping for ADAS/AV sensing

Falcon-H8 Performance, Power and Cost

NVIDIA T4 PCIe

General Purpose GPU

130 TOPS

Power 70W

Falcon-H8 PCIe

Dedicated AI Processors

156 TOPS (w/6 Hailo-8™ devices)

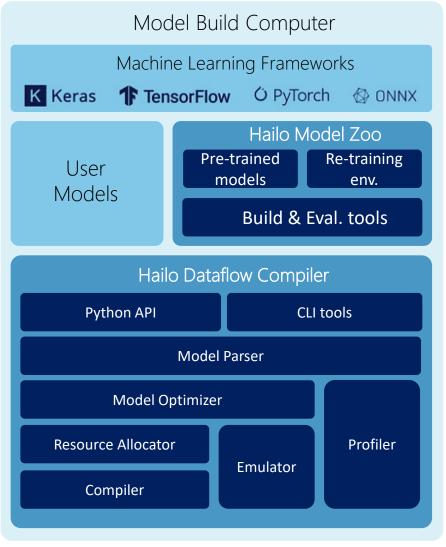
Typical Power 35W

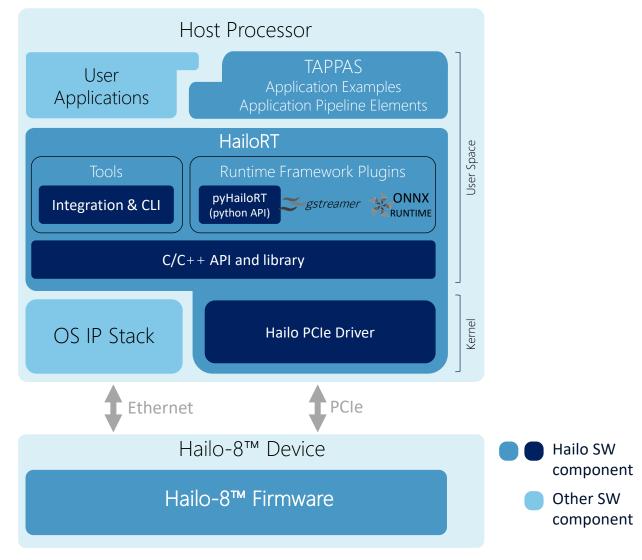
ResNet-50 Benchmark

	Performance [FPS]	Power [Watt]	Power Efficiency [FPS/W]
Falcon-H8 *1 (4x Hailo-8)	5,313	32	166
Falcon-H8 *1 (6x Hailo-8)	7,692	38	202
Nvidia T4 *1	1,109		
Nvidia T4 *2	3,288	70	47
Nvidia T4 *3	4,909	70	70

- 224x224 image resolution
- 8-bit precision
- *1 Batch size = 1
- *2 Batch size = 8
- *3 Batch size = 128
- Source: Nvidia T4 performance

Falcon-H8

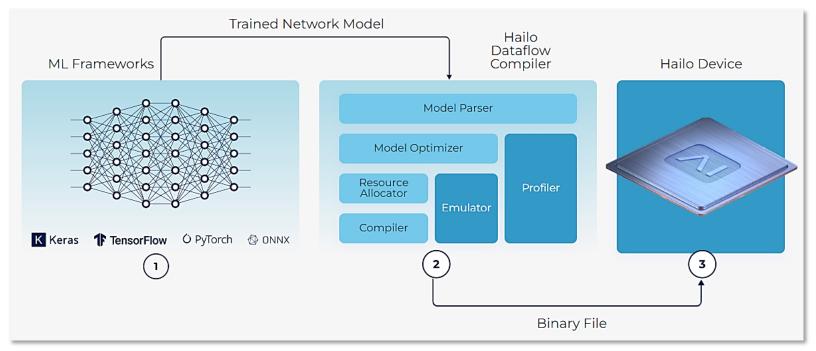



X3 Better
Power Efficiency

Hailo Software Toolchain and Developer Tools

Model Build Environment

Runtime Environment

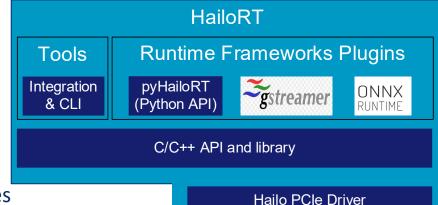


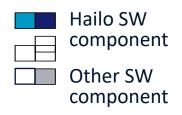
Hailo Dataflow Compiler

Automated software toolset

converting trained models to

Hailo's executable format

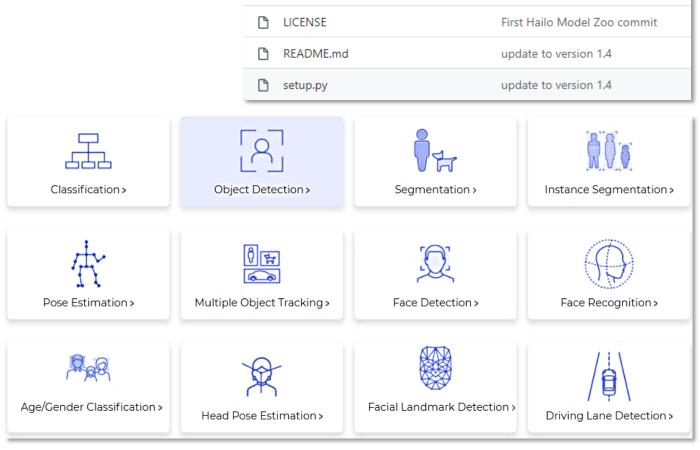

- ▶ Efficient quantization scheme allowing flexibility between performance and accuracy
- ▶ Automated resource allocation for meeting user's requirements in FPS, latency and power consumption
- ▶ Accurate profiling (FPS, power, latency) and bit-exact emulation of expected accuracy
- Supporting multiple Hailo devices and forward compatible



HailoRT Key Software Modules

Production-grade, light, runtime software precompiled for x86 & AArch64 for the host CPU; Open-source in github

- Runtime frameworks Integration
 - pyHailoRT Python API
 - ▶ Standard frameworks support: GStreamer, ONNX runtime
- Integration Tool
 - for verification of the hardware integration of Hailo-8™ M.2 & mPCle modules
- CLI Tools
- HailoRT Library
 - ► C/C++ API for control and data transfer to/from Hailo device
- PCle Driver
 - External kernel module. Can be installed using DKMS framework
- Yocto Layer
 - ▶ Enables integration of Hailo's software into Yocto environment
 - ▶ Includes recipes for the HailoRT library, pyHailoRT and the PCIe driver



Hailo Model Zoo

A variety of common and state-of-the-art pre-trained models and tasks in TensorFlow and ONNX

- Opensource repository (available on GitHub)
- ▶ Quickly and easily reproduce Hailo-8 performance for evaluation and development
- Models can be re-trained with updated datasets

docs

hailo model zoo

hailo_models

training

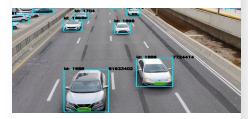
HailoModelZoo Merge pull request #8 from hailo-ai/fix-broken-links

new/renamed files for version 1.4

new/renamed files for version 1.4

new/renamed files for version 1.4

fix broken links



Hailo Al Template APPlications And Solutions (TAPPAS)

Suite of high-performance, pre-trained template AI tasks and applications elements with production-grade pipeline

- Suitable for variety of categories and industries
- Useful for demos and can be used as reference designs
 - Accelerate time to market by reducing development and deployment effort
 - Model(s) can be easily replaced

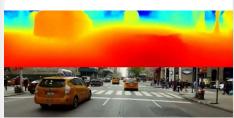
License Plate Recognition

Multi Streams Multi Device Object Detection

Multi Person Multi Camera Tracking

Object Detection and Depth Estimation

Semantic Segmentation


Pose Estimation

Facial Detection & Recognition

Depth Estimation

Instance Segmentation

https://hailo.ai/developer-zone/tappas-apps-toolkit/

Hailo Demos

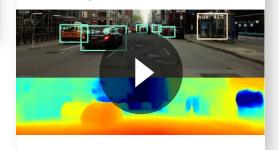
Object Detection

on 15 video streams

Detection with High Power Efficiency

https://hailo.ai/resources/#demos

Multi-sensor IVA for Smart City

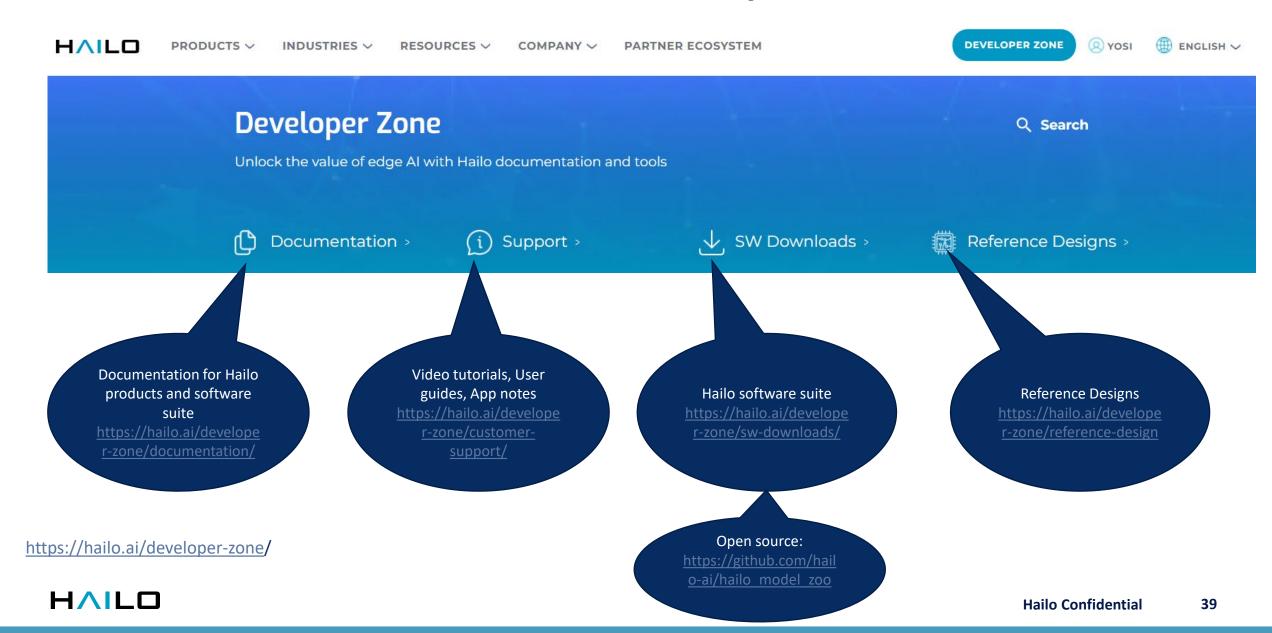

Vehicle License Plate Recognition (LPR)

Multiple Object Tracking

Depth Estimation & Object Detection

Object Detection w/Yolo V5M

Semantic Segmentation


Improved Object Detection w/ Tiling

Intelligent NVR Ref Design

Software & Documentation – Developer Zone & Github

THANKYOU

